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Problem Set 1 
Note: The problems labeled with a star (★) are somewhat lengthy or tricky in the derivations. You are 
encouraged but not obligated to solve them for extra credits.   
 

Lecture 1 

Question 1. Let us consider a single particle with mass m moving on a plane around a center (the 

center is fixed at the origin of the coordinate system, i.e., the translational energy of the system is 

ignored) under a central potential V(r) = – 1/r. The position of the particle is described by the polar 

coordinates r and φ. 

(1) Write down the classical Hamiltonian of the particle in terms of the generalized coordinates r 

and φ and the conjugate momenta pr and pφ.  

(2) Based on the classical Hamilton equations of motion, please derive the expressions for dpr/dt, 

dpφ/dt, dr/dt, and dφ/dt. 

(3) Multiply dr/dt to both sides of the equation of dpr/dt obtained in (2), and integrate both sides 

once over t, during which you introduced a constant of integration W. Show that the constant of 

integration W is the total energy of the particle.  

(4) Substitute  into the expression of W obtained in (3), with dφ/dt from (2). With 

the aid of a new variable u=1/r, show that the orbit of the particle satisfies the following equation 

(which actually represents an ellipse): 

, with  and .      

★(5) Apply Sommerfeld quantization condition on pr and pφ respectively, and show that the 

quantized total energy of the system W is proportional to –1/n2 (where n is an integer). Note that 

although the final result for W is equivalent to Bohr’s formula for H atom, the current approach 

(Sommerfeld, 1916) generalizes Bohr’s circular orbit (by assumption) to an elliptical orbit. 

Useful integrals: 
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Question 2. From the definition of the classical Poisson bracket, prove the following simple yet 

tremendously useful algebraic relations: 

(The superscript “c” stands for “classical”. You can omit this superscript for the convenience of 

writing.) 

(1) [X, Y]c = –[Y, X]c                   (2) [X, Y+Z]c = [X, Y]c + [X, Z]c  

(3) [X, YZ]c = Y[X, Z]c + [X, Y]cZ        (4) [XY, Z]c = X[Y, Z]c + [X, Z]cY 

(5)  

★(6) Jacobi’s identity: [X, [Y, Z]c]c + [Y, [Z, X]c]c +[Z, [X, Y]c]c = 0  

Hint: Use the relations (1)–(5) comprehensively. 

Note: A shortcut to prove this is to use the definition of quantum commutator and argue that it is 

proportional to the classical Poisson bracket, according to Dirac. However, the purpose here is to 

explore the general algebraic properties in a purely classical approach, without resorting to the 

quantum mechanical definition.  

(7) Based on Jacobi’s identity, show that if X and Y are both constants of motion, then the 

dynamical variable [X, Y]c is also a constant of motion.  

 

Question 3. The classical angular momentum L is defined as: 

   

where r is the position of the particle (with x, y, z being the three components), p is the linear 

momentum (with px, py, pz being the three components). The three unit vectors along the x, y, and 

z axis are i, j, and k.  

(1) Evaluating the classical Poisson brackets [Lx, Ly]c and [Lx, L2]c, in which Li is the magnitude of 

the projected L along the i-th (i.e., x, y, or z) direction. 

(2) Write down the corresponding quantum commutators via Dirac canonical quantization. 

(3) Write down the condition imposed on the classical Hamiltonian H (time-independent) that 

ensures the conservation of the angular momentum L.   

∂
∂α

X ,Y⎡⎣ ⎤⎦
c
= ∂X

∂α
,Y⎡

⎣
⎢

⎤

⎦
⎥

c

+ X , ∂Y
∂α

⎡

⎣
⎢

⎤

⎦
⎥

c

L = r × p =
i j k
x y z
px py pz
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Lecture 2 

Question 4. More on angular momentum: 

(1) Write down the specific forms of the operators and  in Cartesian coordinates.  

(2) Show that the commutators you wrote down in Question 3 (2) are consistent with the operators. 

(3) Prove the following relation between the total angular momentum and the total linear 

momentum :   

(4) Based on classical mechanics, what is the conjugate coordinate of Lz? (You may want to refer 

to Question 1.) Write down the classical Poisson bracket of Lz and its conjugate coordinate, and 

based on which, write down the quantum mechanical operator of  in terms of its conjugate 

coordinate. 

(5) Prove that  is a Hermitian operator by evaluating the integral  using the 

operator form presented in (4). Here, the state  is a function of the conjugate coordinate only. 

 

Question 5. Given an orthonormal complete basis set  in Hilbert space, please 

prove the resolution of identity (which is also called the closure relation):  

 

Question 6. Given a set of non-orthonormal basis as follows, please use the Gram-Schmidt 

approach to construct an orthonormalized set: 

(1) Real-number space for all :   

(2) 3D vector space:  

 

Question 7. A planewave is  where k is the magnitude of the wavevector, let us 

consider the orthonormalization between two planewaves  and . Dirac defined a function 

 (Dirac delta function) for dealing with planewaves: 

L̂i L̂2

L̂

p̂ p̂ × L̂+ L̂× p̂ = 2i!p̂

L̂z

L̂z χm L̂z χn

χn

1 ,!, i ,!, N{ }

Î = i i
i=1

N

∑
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⎜
⎜
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⎟
⎟
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⎜
⎜
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⎟
⎟
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⎟
⎟

k = Aeikx

k ′k

δ (x)
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 and   

This definition could be easily extended to three dimensions. We shall only consider the one 

dimensional case here. 

(1) Evaluate  

★(2) Show that  can be used to represent the Dirac delta function. Try to 

visualize g(x) by plotting it with n=1, 3, and 8. 

(3) With the aid of the function g(x) above, show that , in which the normalized 

planewave . 

  

Question 8. An operator , representing observable A, has two normalized eigenstates  and 

, with eigenvalues a1 and a2, respectively. Operator , representing observable B, has two 

normalized eigenstates  and , with eigenvalues b1 and b2. The eigenstates are related by: 

  

(1) Observable A is measured, and the value a1 is obtained. What is the state of the system 

immediately after this measurement? 

(2) After step (1), if B is now measured, what are the possible results, and what are their 

probabilities? 

(3) Right after the measurement of B (i.e., step (2)), A is measured again. What is the probability 

of getting a1? 

 

Lecture 3 

Question 9. Calculate the probability flux j given by the following wave functions : 

(1) , in which c is a constant (real or complex) and  is a real function.  

(2) , in which the momentum p is along the positive x direction. A and B are 

δ (x) =
0 (x ≠ 0)
+∞ (x = 0)

⎧
⎨
⎪

⎩⎪
δ (x)dx

−∞

+∞

∫ = 1

f (x)δ (x − a)dx
−∞

+∞

∫

g(x) = lim
n→+∞

sin(nx)
π x

′k k = δ (k − ′k )

k = 1
2π
eikx

Â α1
α 2 B̂

β1 β2

α1 = 3 β1 + 4 β2( ) / 5,      α 2 = 4 β1 − 3 β2( ) / 5

Ψ

Ψ = cΦ Φ

Ψ = Aeipx/! + Be− ipx/!
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the normalization constants. (Go ahead and directly use A and B without actually normalizing the 

wave function.) 

 

Question 10. The potential function used in quantum mechanics, which represents a physical 

system, is chosen to be a real function in order to keep the Hermicity of the Hamiltonian operator. 

Nevertheless, for the convenience of describing a process in which a particle is absorbed by a sink, 

one can artificially write the potential function in a complex form: , where both VR 

and VI are real. VI is a constant and it is the imaginary part of the potential V.  

Please go through the derivation of the continuity equation and show that the total probability 

given by real wave functions for finding a particle decreases exponentially as , which serves 
as a phenomenological description of the absorption process. (Please note that the probability flux 

at infinity is zero.) 

 

Question 11. In the Heisenberg picture, we defined the operator  as . To 

compute this operator, one could use the following formula: 

 

in which,  

, 

, 

, 

 

and so on. 

Please prove this formula. 

Hint: Consider function  where λ is an arbitrary constant, and evaluate its n-th 

order derivatives . Compare these results with the formula to be proven.  

 

V =VR − iVI

e−2VIt /!

ÂH ÂH = eiĤt /! Âe− iĤt /!

eÂB̂e− Â = Ĉ0 + Ĉ1 +
Ĉ2
2!

+
Ĉ3
3!

+!=
Ĉn
n!n=0

+∞

∑

Ĉ0 ≡ B̂

Ĉ1 ≡ Â,Ĉ0⎡⎣ ⎤⎦ = Â, B̂⎡⎣ ⎤⎦

Ĉ2 ≡ Â,Ĉ1⎡⎣ ⎤⎦ = Â, Â, B̂⎡⎣ ⎤⎦⎡
⎣

⎤
⎦

Ĉ3 ≡ Â,Ĉ2⎡⎣ ⎤⎦ = Â, Â, Â, B̂⎡⎣ ⎤⎦⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

f (λ) = eλ Â B̂e−λ Â

d n f (λ) / dλ n


